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The elements of the information theoretic approach to instantaneous electron distributions between molecular
subsystems are developed by following the thermodynamic theory of fluctuations and irreversible processes.
The distribution function and information theoretic basis of the stockholder partitioning, defining the equilibrium
distributions of electrons among subsystems, are briefly summarized. The nonequilibrium (instantaneous)
local entropy deficiency and the state parameters and their associated intensive conjugates in the entropy
deficiency representation are introduced using the promolecule-referenced local measures of the information
distance (entropy deficiency) of Kullback and Leibler between the instantaneous subsystem electron densities,
conserving the overall molecular density and the free or Hirshfeld subsystem electron densities, respectively.
Within a local description, the Gaussian distribution function of Einstein’s theory is introduced, predicting a
local dispersion of the subsystem density to be proportional to the molecular density and the square root of
the free subsystem share in the promolecule density. The key concepts of the local irreversible thermodynamics
of molecular subsystems are introduced for alternative information theoretic entropy-deficiency representations.
They include the corresponding affinities (forces) and the conjugate fluxes (response quantities), which together
determine the local entropy deficiency source. The Onsager reciprocity relations are derived and justified

through fluctuations.

1. Introduction criteria® to define the promoted (polarized) atoms in a

h bl f o . lecular densitv | molecule® and to relate the surprisal analysis of electron
The problem of partitioning a given molecular density Into - g hjties in molecules to the familiar density-difference dia-

pieces representing molecular fragments (e.g., those of thegrams? The information theory has also been used to define

bogded datprfns mtla Tholecugg) dhas .r(i.cently bﬁgn tgf:]}lven.z.atn new descriptors of the doneacceptor systems, which combine
g?tllqaesehég]o%emn%:gn'cale?kr]i::;ogsrﬁgpm!gné mgglaﬁ;:ter%gpm both the energy and information entropy derivati%es;” and
P 9l y IC app ' the Hirshfeld stockholder division rule has been generalized to

of bonded fragments, which retain as much as possible thecover the unbiased partitioning of many-electron densifies
information contained in the free atoms defining the promol- . p . 9 y ; o
ecule? It has been demonstrated that, in accordance with the N chemistry, one is interested not only in the equilibrium
basic proposition of information theory, independently of the distributions of electrons in molecules and their constituent
information-distance measure applied (e.g., the entropy defi- fragments but also in processes characterized by rates. The
ciency (missing information) of Kullback and Leib®gr the conceptual structure of such a phenomenological dynamical
Hirshfelc® stockholder partitioning appears as the entropic description of the subsystem density fluctuations, determining
equilibrium schemd:7 These stockholder subsystems represent their softness characteristits,and instantaneous flows of
the bonded molecular fragments, which most resemble the free€lectrons in molecules, in the spirit of the irreversible thermo-
subsystems, and they exhibit appealing local information- dynamics! calls for two types of conjugate quantities: affinities,
distance equalization rulé&:7 In such a thermodynamic-like  to describe the forces that drive a process, and fluxes, to describe

description, the information thed¥§provides the local entropy ~ the responses to these forces.

representatiofr®> complementary to the familiar energy repre- The main purpose of this work is to investigate the elements
sentation emphasized in most of the theories of the electronic of such an instantaneous (nonequilibrium) approach to molecules
structure. and their subsystems. More specifically, we seek an extension

Combining this information theoretic approach with the of the previous, equilibrium information theoretic development
density functional theo84° results in a thermodynamic-like into the nonequilibrium local-thermodynamic description of
description of equilibria in molecules and their constituent molecular subsystems, covering the instantaneous, fluctuating
fragments'?> covering both the horizontal displacements, from state parameters and providing them an appropriate information
one ground-state density to another and the vertical, internaltheoretic distribution function. The second moments of this
displacements, for the fixed molecular density. Similar informa- distribution will be examined in some detail. In particular, the
tion-distance concepts have been used to extract the covaleniocal dispersion of the instantaneous subsystem densities around
and ionic bond multiplicitied! to design the molecular similarity  the corresponding equilibrium (Hirshfeld) values will be linked
to the overall molecular density and the subsystem share in the
* E-mail: nalewajs@chemia.uj.edu.pl. promolecule density. The square of this dispersion will be shown
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to be related to the subsystem local softri€Sshe elements of ~ where S(x") is the entropy function of the reservoirs, with
the irreversible thermodynamic, continuous description of the standing for their state parameters. The displacement function
molecular-density-conserving flows of electrons between sub- in the exponent of the distribution function of eq 4,
systems will be established, including the alternative definitions ) _
of affinities and fluxes, which together define the local entropy d[S(x) — Z £, ]
deficiency source. The corresponding Onsager reciprocity (@
relations will be derived and justified through fluctuations. =[S(x) — z f,'%, 1 — [S(X) — Z f,'%,]
08 o

2. Distribution Function of Fluctuating State Variables g ’ s fox!
In ordinary thermodynamiéshe instantaneous (i) extensive = S(F,x) = §F, X) = 0S(x) — Z % (7)
parametergx,} of systems in contact with the reservoirs (r)

appropriate to a given set of the free parametées (xo, X, is defined with respect to the maximum value of the quantity
..., X4) undergo continual fluctuations due to transfers between in the square brackets of the preceding equation over the
the system and the reservoirs. Their equilibrium val{xeg, complete ranges of fluctuating variables:

predicted by the maximum entropy principle, are the average o _
values denoted here by thebrackets so that the average value  S(f', x°) = max[S(x', X°) — z f,"%,1=9Xx) — z f.'%,
o8

of the deviationdx,’ = X — X, vanishes by definition: @ @8)
X, O=x%, or DBx/0=&, —x0=0 Therefore, the quantity defined by eq 8 is no longer a function
a=0,1,2,..5 (1) of the fluctuating extensive parametefsbeing instead solely

determined by the corresponding intensive parameters of the
The reservoirs are assumed to be restrictive with respect to thereservoirsf’, and the system-constrained extensive parameters,
remaining variablex® = (Xst1, ..., X), which are kept constant.  xc, In fact, it represents the Legendre transform of the equilib-
In the thermodynamic theory of fluctuations the average (or rium entropy since the most probable valuesxdaindx™ (i.e.,
the most probable) values of state parameters are determinedhose maximizingW, a monotonically increasing function of
by the statistical distribution functiolV(x) of all extensive the exponend[S(x) — S «foX.]) are determined by the condition
parameterx = (x', x¢), which determines the probability

o _ _ _ S(,x) = Y fu'x, = maximum 9)
W(X) dx, dx;' ... dx = W(x) dx' = P(dx') ) T
that simultaneouslyg will be found in the range of g, x; Hence, the maximum of eq 8 occurs when the fluctuating
will be found in the range ofxli, etc., andkd will be found in variables have their equilibrium values, which, for macroscopic
the range of &y. systems, are practically identical to the most probable values

The thermodynamic distribution functio®(x) depends on X and X'0= x'* because of the sharply peaked nature of the
the instantaneous entropy, a function of the system extensivedistribution function. The resulting ratio of the distribution width
parametersS(x) = S(xi, x), which assumes the equilibrium  t0 the average value is to the inverdg)(power in the extensive

given their average, equilibrium values: equilibrium value of eq 3, and thus eq 8 defines the Legendre
transform of the equilibrium entropy, which corresponds to the
S(X) = [S(xi, X = S(Dkli°) — S(x) (3) replacement of the fluctuating extensive variabtedy their

entropy-intensive conjugatés= f'in the list of state parameters:
A separate postulatespecifies W(x) as the exponential o )
function of a displacement in the relevant Legendre transform Sf', x% = S(FH'x°) — z f ', 0= 9f'] (10)
of S(x), the generalized Massieu function, which is appropriate [
for the actual reservoirs involved. More specifically, the
probability P(dx’) for a system in contact with the reservoirs
corresponding to the sat is given by

W) = Q exple {0 [S() — 31, 1) = S(f, x9 = S(x', x°) — Z f'x, = SIf] (11)

One also defines the Legendre transform of the instantaneous
entropy (i.e., the instantaneous Massieu function)

Q explks [0S(X) — Zfaéxai]) 4) where the entropic instantaneous intensive parameters are
o defined as the corresponding partial derivatives of the instan-

Here, Q is the normalizing constant such that taneous entropy
. - aS(X, x9)

S o = 1 © v 2

g?/:r ESE;ZS:” 3;?;;?”?103 ={fs(i) f_r}Sg% EEZ 2”2:6'; Therefore, the equilibrium condition of eq 9 can be rephrased
9 - Pl e Y as follows: the equilibrium values of the unconstrained

conjugate intensive parameters in the entropy representation, . . . :
. . . extensive parameters of a system in contact with reservoirs
equalized at the corresponding reservoir valfies

maximize S[f]] at constanfi = f.

3S(X') In thermodynamics, the average values of the state parameters

f=(@, .. Ig==({,..)= — (6) plus the full sets of moments are completely equivalent to the
oX distribution itself! It follows from the form of the distribution



3794 J. Phys. Chem. A, Vol. 107, No. 19, 2003

function of eq 4 that the thermodynamic fluctuation (second)
moment is given by the expressifon

[0, 0%, 0= [0x,' 0%, W(x) dx' =

oX
s ep)

where the constraints(8) = (fo, ..., fs—1, fg1, ... fs, X% =
("5, x°) andc(a) = (f'q, x°). In particular, fora. = S, the mean-
square deviation[{ox,)20 = [X,/)20 — X,2 measures the
magnitude of fluctuations of the variablg!, with the ratio
[0ox,)2%x, characterizing the “sharpness” of thiéh section
of the distribution function. The general moment of eq 13, for
o Z 3, similarly reflects the correlation between the fluctuations
in X« andxg .

In what follows, we shall examine fluctuations in the
distribution of electrons in a molecule and its constituent

X
_kB(Wﬁ)C(a) (3)

a

fragments. The molecular system can be considered to be
externally closed or open. The former case corresponds to the

“frozen” (integer) overall number of electrohs= [p(r) dr or

to the fixed electron density, whereas the latter case represents
a system in contact with a macrospopic reservoir of electrons.
In the externally open system, its grand canonical ensemble
average (fractional) number of electrons, resulting from the
integration of the corresponding ensemble average density,
exhibits different instantaneous values at a given location in

Nalewajski

density of the promolecufeconsisting of the free subsystem
densities shifted to their actual positions in a molecule, which
also serves as the reference in diagrams displaying the density
difference due to bond formatiomAp(r) = p(r) — p%(r).

The unbiased fragment densities of eq 14, obeying Hirshfeld’s
common sense stockholder princihlehat each fragment
participates in the local molecular “profiis(r) in proportion
to its local share in the promolecular “investmep®(r),

H 0
pi (1) _ P (r) _no
p(r)  p%r) D)

k
have a solid basis in the information the®fysince they
minimize the entropy deficiency (missing information) of
Kullback and Leible@
Pki(r)
. dr
(r)

Z Sedn) In[

= Z S A (p(r); p 1)) dr =
SAS(r); p°0)) dr (16)

or other information-distance measures between the instanta-
neous (trial) subsystem densitig¢r) and the fixed reference

D(r) = (15)

AS[p'|p?] =

space because of the electron transfer to and from the reservoirdensitiesp(r) of the isolated fragments, subject to the local
One can also examine the state of subsystems (i.e., moleculatonstraint of the exhaustive partitioning(r) = Sk p'(r),*7

fragments, e.g., the bonded atoms in molecules (AIM), which

can also be regarded as externally (or mutually) closed or open.

The instantaneous densities of subsystephs) = {pd(r)},
giving rise to the fixed molecular electron densip() =
Skpk(r), and the corresponding instantaneous electron popula-
tions,N' = fp'(r) dr = { Ny}, also fluctuate while preserving
the overall densityp(r), and number of electrond| = 3 NJ.

Alternatively, one can treat a small portion of a molecule as
a local subsystem, with the corresponding molecular remainder
then representing the complementary microscopic reservoir,
which is infinitely larger than the local subsystem itself. The
small subsystem, chosen mentally to be of constant (infinitesi-
mal) volume, undergoes intrinsic fluctuations in the electron
(number) density, and it exhibits the associated fluctuations in
the energy density.

3. Equilibrium Distribution of Electrons in Molecular
Subsystems

Let us consider the fluctuations exhibited by the instantaneous
densitiesp/(r) and electron populations’ of molecular frag-
ments, e.g., AIM, reactants, functional groups, etc., relative to
the Hirshfeld densitie3? 7 pH(r) = { p(r)}, and the associated
numbers of electron\" = fpH(r) dr = { N}, characterizing
the equilibrium subsystentsThese stockholder pieces of a given
molecular density(r) are defined by the relations

(r)
p"(r) = p(r) I%] =°()w(r)  p(r)= Z p(r)
p(r
p%r) = Z p(r) (14)

involving the unbiased local enhancement fact(r,), of the
ground-state densities of the free subsystei®(s) = { p2(r)},
common to all constituent fragments. Hes&(r) is the electron

min{ AS[p'p] — [F(r) [Z pe(r) = p(r)] dr} =
ASp"p°]

Z S As( (1) p X)) dr =

Jp(r) InD(r) dr = AS[plp”] =
S AS(p(r); p°()) dr (17)

where the Lagrange multiplier functid#(r) can be determined
from the value of the constraint. Thus, given the densities of
isolated atoms, which provide a natural reference in chemistry,
this minimum-entropy deficiency principle determines the
subsystem densities in a molecule as a function of the molecular
ground-state density. This is in the spirit of the density
functional theony,1%according to whiclp, or the shape function
p = p/N,*2 determines all of the physical properties of the
molecular system under consideration. The Hirshfeld pieces of
the molecular density were also shown to satisfy some objective
criteria of transferability:?

The Lagrange multiplier function in eq 17 represents the
intersubsystem equalized local intensive parameter,

OASplp’] _ aAS(p(r); p°(r))
op(r) ap(r)
_ 3As(p"(1): )
I, (r)

Fr)=21+Inw(r)=

(18)

We have explicitly indicated in the preceding equation #(@}
is the (intensive) entropy-deficiency conjugate of the (extensive)
molecular and Hirshfeld densities. Thus, this overall function
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also determines the corresponding intensive conjugétés
of the subsystem densities:

0Agp"’]
p"(r)

_ aAS(p"(r); (1))
9p"(r)

...). In eq 19, the functional

F'(r) = =F(r)1 (19)

where the unit vectol = (1, 1,

derivative with respect to the subsystem density is the partial

derivative calculated for the fixed densities of the remaining
subsystems. It follows from eq 18 that all of these entropy-

deficiency conjugates of the electron densities measure the

surprisal function of the overall distribution of electrons in a
molecule relative to that in the corresponding promolecule
reference:

1[p(r)1p°()] = Inw(r) = 1(r) (20)

It should be observed that egs 14, 18, and 19 imply that the
local values of the subsystem surprisals are equalized for the

Hirshfeld partitioning at the corresponding value of the surprisal
function of the system as a whalé:’

A )] — 1) =1()
)

k=1,2,..

Lo (N1 (1] = |nl

Pk
,m (21)

Within the information theoretic thermodynamics of molec-
ular systems and their fragmeritthe minimum-entropy defi-
ciency principle of eq 17 replaces the familiar maximum-entropy
principle of ordinary thermodynamidgSee eqs 8 and 9) Thus,
the maximum principle of the generalized Massieu function of
eqg 8, in which the equilibrium values of the unconstrained
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this functional defines the equilibrium Legendre transform
of the entropy deficiency:Agp"p°% p] = AJF|° p] =
ASFH|p°, p].

One could similarly introduce the instantaneous intensive
entropy-deficiency parameters defined as the corresponding
partial functional derivatives of the instantaneous entropy
deficiency of eq 16:

Fir) = 0AS'[p'1p"] _ 9AS(H'(1); #°(1))
op'(r) 9p'(r)
L p iy = P80 p0)
k )
p(r) i }
1+In =1+1,(n} (23)
Pk(r)

defining the corresponding Legendre transform

AS'[p', F'|p° = AS'['p] —
Z SR p(r) dr = Z AS IR0, p] (24)

The equilibrium values of the “intensive” subsystem variables
for the Hirshfeld subsystem densitigg(r) = FH(r) = F(r)1,
can be interpreted as resulting from coupling of the molecular
fragments to a common Hirshfeld reservoir characterized by
the entropic intensityF(r) related to the global molecular
surprisal functionl(r). This observation stresses the global
equilibrium character of the Hirshfeld partitioning with respect
to the hypothetical intra- and intersubsystem flows of electfons.
The subsystem analogue of eq 10 now reads

parameters in a system in contact with reservoirs characterized

by their intensive parametefsmaximizegf1 at constanfi =

f, will be replaced in the information theoretic approach by an
appropriate extremum principle of the relevant Legendre
transform of the entropy deficiency.

For example, eqgs 18 and 19 identify the Lagrange multiplier
function associated with the local constraint of the exhaustive
partitioning as being equal to the local intensive conjugates
{FH(r)} of the equilibrium (Hirshfeld) subsystem densities
(equilibrium extensive variablesyH(r) = F(r), k=1, 2, ...,

m. Therefore, the auxiliary functional of the optimum (Hirshfeld)
densities in eq 17 is

ASp"° p] = min{AS[p'|p°] — [F(r)p'(r) dr} =
ASplp° = [F(r) p(r) dr

m] o) dr =

op(r)
ASF[0°, o]
= ASp"p"] — f{ F(r)}-p"(r) dr

0
SCARE f{ Af”(')”O]] ey or =

ASF"0°% o] (22)

where the instantaneous overall density= S pJ, replaces
the extensive variablep,or pH, with their intensive conjugates,
F or F, in the list of state parameters. As also shown in eq 22,

= ASp|p’] — f[

ASF"Ip%, ol = ASp"[F1p°, p] —
Z SJEL) p(r) dr = min, AS[p', F[p]1p%] (25)

Thus, the minimum-entropy deficiency principle of eq 17 can
be interpreted as (cf. eqs-81)

min{ AS[p|p°] — Z SR p(r) dr} =
minAS[e', F[o] ]
= ASp"(F")1p"] - Z SR oy dr =

ASF"0° p] =

In other words, the equilibrium subsystem densifigg/(r)C=
p(r)} of a molecular system in contact with the Hirshfeld
“reservoir”, exhibiting the entropy deficiency intensig(r),
which forces equalization of the subsystem surprisals at this
global surprisal level, minimizeAS[p!, FH[p]|p at fixed
Fd(r) = Fd(r) = F(r). This is precisely the minimum principle
yielding the generalized Massieu function of eq 25, the Legendre
transform of the equilibrium entropy deficiency, in which the
subsystem densities have been replaced by the local Hirshfeld
intensities in the list of the subsystem state parameters.

The final result of eq 26 directly follows from eqs 148
and the overall normalization of the Hirshfeld subsystem
densities:

—N (26)
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H 0 1 _ _ H _ _ contributionsAsF(r)]. It also follows from the preceding
ASFIP, o] f Z pic(r) ar fp(r) ar N (27) two equations that

Also, because of the additive character of this Legendre jAqF(r)]
transform (see eq 24), its overall value can be decomposedaF—= —p(r) 0
into the corresponding Hirshfeld subsystem contributions ) IF(r) o
As{F o0, p] equal to the negative value of the corresponding OAS[F(n)]
normalizationNH of the electron density of the “stockholder” i -
molecular fragment: IF(r)

S L) BT

—p(r) (31)

AS[F"p°, o] = Z AsF el ] = where the partial differentiation implies that all remaining
variables of the local entropic Legendre transform are held fixed.

_ Z kaH(r) dr = _Z NkH (28) To simplify notation, in what follows we shall omit the
specification of a given position in space, which specifies a
o . o particular local subsystem under consideratigs(r) = p,
4. Local Description of the Density-Partitioning Problem oeir] = o], AS(e'(r); pOr)) = AS(p';p%), AsFH(r)] =
The above global development can be given an equivalent, AS{F«"], and so forth.
local interpretation by taking all quantities per unit volume and
using the integrand\s(p'(r); p%(r)) = AS(r) = YiAsd(r) of 5. Local Gaussian Distribution Function
the entropy deficiency functional in the subsystem resolution
(eq 16) as a measure of the local subsystem’s missing informa- It follows from eqgs 16 and 30 that the local information
tion (entropy deficiency) density. Its equilibrium value is reached distance analogue of the exponent in the thermodynamic
for the Hirshfeld densities of molecular fragments when distribution function of eq 4,
AS(r)O= AS(pH(r); p(r)) = AS(r) = SAs(r) and the
corresponding entropy deficiency_conjuge}tes of the local value — x{ Asi(p‘; po) — Z FkH Pki — AS[FH]}
of the subsystem electron densities are intersubsystem equal-
ized at the overall intensity valueE"(r) = dAS(r)/ap"(r) = o
(FHp; 1] = R = aAs()lapd(r) = F(r)}. The local = —[As'(p; p°) — As(p"[0]; p°) |
instantaneous intensities are similarly defined by the partial - Z F ol — o]
derivatives of eq 23. The local analogues of the instantaneous

Legendre transform of eq 24 and the entropy deficiency Massieu Lo -
function of eq 25 are =« [0AS(p'; p, p°) — Z R opl=

AS(p(r), F(r); p(1) = AS(p'(); p°(1)) — < ) 1088 )~ Fon] (32)
Z F((r) pi(r) = As[F(r)]
o _ o where the factor = p~! is chosen to make the exponent
= Z As (0 (), F(); pr)) = Z AS/[F/(N] = dimensionless, measures the displacement per electron of the
local instantaneous information distance relative to that of the
_Z pki(r) = _pi(r) (29) Hirshfeld fragments. As indicated in the last equation, the overall
displacemenbAs is additive over the constituent molecular
fragment componentsdAs(}.
AS(F(r); Po(r)= p(r)) = AS(p"[F'[p; 1]; 1T; Po(r)) The local information-theoretic analogue of the thermody-
_Z FkH[p; r] pkH[,o; r= As[FH(r)] namic distribution function of eq 4 thus reads

= As(p(r); p°(r)) — F(r) p(r) = ASF(r)] W(p) = w exp{ —p '[0AS(p'; p, p°) — Z R opel}
= minAs(p'(r), F[p; 1T; p°(r)) = Mo, expl—p [0AS (o0 p1 ) —
2 Asp (), R0 o), () = F1 o) = [Wio) (39
Y ASIF0)] k

where{Wi(p«)} are the respective subsystem distributions and
- _ pkH(r) = —p(r) (30) o = Ilywk is the overall normalization constant with the
Z subsystem normalization factofa)} such that

Hence, the density-conserving(r) = p(r) instantaneous i i .
divisions of a given molecular densip(r) give A[F(r)] = SWlp)do =1 k=1,2,..m (34)
AS[F(r)] = —p(r).

As indicated above, the subsystem contributions to these local The associated Gaussian distribution of the familiar Einstein
Legendre transforms are also additive. The equilibrium function method can be obtained be expanding the local instantaneous
AYFH(r)] is thus “normalized” to the negative value of the entropy deficiencyAs around the equilibrium valuas|o for
molecular density, with the negative subsystem densities dp' = p' — p" = 0in powers of the local density displacements
—o(r) = —p[p; r] providing the corresponding subsystem dp' = {dp4},
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OAS = AS — As|,= Z FloOpe +

% ZZ dp s 0p + ..., (35a)

H_ 82AS
PPy

_ 9

= 1+1In
o 9Pk

whereF|o = FH = F (eq 18) and
O
o

5

(PkH)ﬂéM =

0
0

(”—lék. (35b)

PP

Therefore, if one now neglects the higher-order terms and
changes the normalization accordingly, one obtains approxi-
mately (see eq 15)

o

(00 )
1 ‘
Fop' +3 (1D 00’ (30

‘ 1 .
OAS = SAS? =FY 6p + = 502 =
Z Px ZZ (0py)

Substituting this expression into eq 33 finally gives the Gaussian
distribution in terms of the relative density displacements

oy = {0yd= dpilp},

W(oY') = W(oy') =
@ exp{ —(p) [0As? — Z Fopd) =

[=expl=(2D,) (%)
k

= [TWE0y) = [TWE©Gp,) (37)
k k

A comparison between th&E(Syy) function and the standard
normal distribution identifies the local dispersion (spread) of
ok aroundp, ot = o[dpd] = p(D)Y2 and the subsystem
distribution normalization factoryx = (oW)~Y(27)~Y2 This
dispersion of the local value of the instantaneous subsystem
density implies the equivalent relative dispersiopyy] =
(D2 = o[opd]l p.

The product of the uncorrelated subsystem Gaussian distribu-
tions of eq 37 gives correctly the second moments, which are
of main physical interest. In particular, it predicts the local
dispersion of the subsystem density to be proportional to the
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AAS[F]
F

W _

Pki + W= Pil(Pki — p W=

aF
p Op W (38)
Thus, the diagonal second moment of eq 13 can be written as
oW

()2 = W= [(Op)Wds' =p [ épk‘(m) o'
k

=p 3H[f6pkinpi]—pf\A{ Idpi
oF,

)

Here we have used eq 1 and egs 14, 15, 37, and 39 to calculate
the derivatives

A(0py)
aF,"

3|}§Pki
aF,"

3PkH
aF,"

3PkH
aF,"

H

=p

=p

= oD,
(39)

0p) _ _ op _ AT

- = (40)
oF F oS oF RN S

ap :

Ce=0=p" k=12.m (@)
k

The corresponding expression for the off-diagonal second
moment reads
aF, " oF,"

ap H ap H
i i k |
[dp, Op/T= P(F) = (8F—H) = —P{
| k
—pSe=0 (42)

since the distribution of eq 37 predicts that a positive fluctuation
op is equally likely to be accompanied by the fluctuatiofs/|
and—|dp||; that is,0pd anddp,' are uncorrelated.

It should be emphasized that the partial derivatives in eqs
38—42 are calculated for the fixed (intersubsystem-equalized)
Hirshfeld intensities of the remaining subsystems. The partial
differentiation with respect toF thus corresponds to a
thermodynamic description in which thieh subsystem is
coupled to the separately controlled local reservoir characterized
by the intensityF. Thus, in the derivative of eq 40, one
monitors the response ip' to a given displacement iRy,
with the remaining local density components being coupled to

azAs[FH]] _

molecular density and the square root of the subsystem shardN® common reservoir of the initial equilibrium.

in the molecule/promolecule (eq 15). Thus, as intuitively
expected, the largest local dispersion is exhibited by the AIM
that contributes the most to the local value of molecular density.
It has been argued recerftlyhat the local softness of the
Hirshfeld subsystem is proportional to the global softness of
the molecule as a whole and the subsystem share fégfor

We can therefore conclude that the subsystem local softness

reflects the square of the dispersion in the local subsystem
density. The predicted expression for the dispersion of the
fragment density can also be interpreted as an additional local
equalization rule for the relative subsystem dispersions:
GkH(DkO)71/2 = p, k= 1,2, ..m.

The local second moments of the Hirshfeld subsystem
densities can be also expressed in the form of eq 13. First, we

To further simplify notation, in what follows we shall drop
the upper index i indicating the instantaneous quandipg: =
Opk, 0AS = 0As, and so forth. The trial densipy of a entropy/
information variational principle could be also interpreted as
the nonequilibrium instantaneous density of subsystem

6. Affinities, Fluxes, and Reciprocity Relations

Following the conceptual structure of the phenomenological
irreversible thermodynamidswe require two types of quanti-
ties: affinities, to describe the thermodynamic forces that drive
a process, and fluxes, mesuring the responses to these forces.
The fluxes vanish when the affinities vanish, and nonzero
affinities lead to nonzero fluxes. The rates of irreversible
processes are characterized by the relationship between fluxes

observe that by using eqs 31 and 32 one can express theand affinities. Clearly, specific definitions of such quantities

derivative

are expected to depend on the measure of the information
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distance (entropy deficiency) used in the information entropy where the share factor contribution is
representation. The identification of the local affinities for a
molecular system and its fragments will be carried out by (VDkO) (Vpko) (Vpo)
considering the rate of the local production of the entropy 0o o 0
deficiency in a continuous system. Dy Pk

As we have already indicated in eqs 16 and 17, one defines
the entropy deficiency in a nonequilibrium system by postulat-
ing, as in the irreversible thermodynamicthat the functional

(45)

The responses to these forces are measured by the local
subsystem fluxes characterized by the rates of change of the

dependence of the local instantaneous information distanceIocal extensive parameters (subsyster_n de”?"‘md their sum

density on the local instantaneous parameter is taken to bep)'AS |nthe!rrever5|ble thermodynamics of continuous systems,

identical to the dependence in the Hirshfeld equilibrium. they are defined herle. as components of the corresponding local
There are two classes of changes in the electronic structure\lieftolr czurrent de_nsrges of de\l}ec_tror{s‘llk _T(f‘]]ka _'tX’ dy, 2), q

of interest in chemistry: the so-called vertical displacement d'_ t" ' ..f.,m} ﬁ { r}t an ﬂ_tz:h k- 1he mtagnldu d('e arl_

redistributes electrons among subsystems while preserving the Irection ot each veclor refiect the amount and direction,

density of the system as a whole, and the horizontal diSpIaCe_respectlvely, of the corresponding electron flow across a unit

ment represents a transition from one ground-state density to“';lrea ";1 tl:)n't t'n:e' Th de :cnstantartleous Io;:aoll ct?rl:rrenthdentgl?
anothe® The former case, to which we limit the present 5p] of the entropy deficiency transported through a unit area

analysis, corresponds to the fixed overall density and thus to per unit time is then given by a combination of the subsystem

the fixed electronic energy and overall missing information electron flows
relative to the promolecule reference; only the energies of the P
embedded subsysteffsnd the subsystem entropy deficiencies 1=SN6F 1 =5 In X J (46)
change as a result of such vertical variations in the electronic s Z k=k Z H K

structure of molecular fragments. The latter case, representing Pk
a more general change of the system as a whole, would requiresuggested by the differential &p|p

o : : . L H] (see eq 43a),
additional extensive state variables representing the shift in the

system’s overall entropy deficiency, giving rise to the associated 3(0AS pl pH])
information-theoretic temperatufe,measured by the energy doAs=§ —————d(0p) = S OF, d(6py) (47)
conjugate of the global entropy deficiency. Z a[0p,(r)] Z

Let us first examine the subsystem affinitigsa =
(A0 =xY,2,k=1,2,...m = {7 (i.e., generalized We now seek to write the rate of the local production of the
thermodynamic forces of subsystems that drive the process ofentropy deficiency density,
local change in the subsystem-resolved electronic structure). As
in the irreversible thermodynamics, we introduce affinities as dAs= Ag[p] — Ag[p"] (48)
gradients of the intensive parameters that are appropriate for a
given entropy deficiency representation. In this section, we relative to the Hirshfeld value of eq 1Ag[p"] = p In w. A
consider the illustrative example of the Kullbackeibler? displacement in the local entropy deficiency source
measure of the missing information (eq 16). To have forces
that identically vanish at the equilibrium (Hirshfeld) partitioning d(0As)
of a given (fixed) molecular density, we define affinities relative dt
to the Hirshfeld equilibrium as gradients of the local displace-

ments in the subsystem intensities, which are conjugates of the!S then equal to the rate of a local increase of the entropy
density displacements deficiency per unit volumej(dAs)/at, minus the entropy leaving

the region,—V+Js. This statement summarizes the continuity

60 =olp] — olp"] = (49)

H o) of the missing information:
OF(r) =F(r) — F(r) = In|——
pi () d(®As) A(OAS)
H =00 =—(— 1+ V:J, (50)
_ 0Adplp  9ASp"1pY] dt ot
Ip(r) apkH(f) Moreover, since the extensive parameters can be neither

H produced nor destroyed, the equation of continuity for the
_ d(0Agplp"]) (43a) displacemen®dp, = px — pi! of the kth subsystem electron

[0p(r)] density and that for the overall density become
: A(0py)
Fi = VOF, =V|In p_'; =vVvl|In p_';) — |n(p_"0) = 0=——+VJ, k=1,2,..m and
P Pk Py at 20p)
Vo) (Vo' 0=20P 1 vy (51
(00 _ (V0 1) - (51)
Px Py
Therefore, combining the continuity equations (50 and 51)

Here, the local affinity Vo)/pd! associated with thekth with eq 46 gives the familiar expressiofor the displacement
Hirshfeld molecular fragment is of the entropy deficiency production relative to the Hirshfeld

level in terms of the products of forces and fluxes,

(Vo) _ (V) |, (VW) _ (V) , (VDY)

(44) oo = Z%J =Y 73 (52)
PkH Pko w p Dko < Z o
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since from eqgs 43a, 47, and 51 the spontaneous fluctuatiodp = p — p* of the local extensive
parameterg around the corresponding Hirshfeld valyés The
Pk d(0AS) correlation momenid oy 00i(T)C) wheredp is observed at time
Z In u Ve =- T after dpx, must remain unchanged if we replacéy (—7).
Pk ot Hence, taking into account that only relative time between the

_ ) _ two correlated densities is significant,
For the Markoffian system (with no dynamical “memory”),

to which we restrict this analysis, each local flux depends on [dp, Op,(7) = Dp(—7) Op,= Dp(r) op0  (60)

all relative intensitie§ — FM = {0F« = In(o/ o)} and affinities

{A Subtractingdpx dp0from each side of this equation and
dividing by 7 gives in the limitt — 0 the associated relation

J=J( 7}, {oF}) (53) involving time derivatives of the instantaneous densities of
) i . o ) subsystems:

and it vanishes, by definition, when all affinities vanish. The

Hirshfeld AIM do resemble free atoms to a high dedtée. E dp, D:Q doy D

However, this type of memory of the fragment free origin in PO\t o) 0P (61)

theseparated subsystem limit is automatically embedded in the

entropy deficiency functional of eq 16 through the reference Hence, assuming the linear dynamical process of eq 54 for a

densities. decay of the fluctuation(doi/dt) through the phenomenological
ExpandingJ; in powers of the affinities and neglecting the equations

third-order and higher-order terms gives the linear effect of all
affinities on therth flux

doy
oN—|= Z OF 4 k=1,2,..m  (62a)
J = Z FiLy (54) dt

wheredF, = Fx — F¢ (see egs 18 and 23) and
in terms of the kinetic coefficientSLy = Ly({0F})},

doy
3J 33, 3[6 r ]
- E{LK'E(_L) } E{L:(a_7)} (59) = (dt) = (62b)

0Fdq AOF) — OF)

calculated for the equilibrium (Hirshfeld) subsystems for gjyes

which all affinities vanish identicallyoF" = 0, and thus

{FA = V(6RH) = 0}. The representative coefficient measures L p, OF. = S 7 [OF, 6p,0 63
the local linear effect of theth affinity on the rth flux. Z OO Z O op (63)
Combining eqs 52 and 54 gives the for the relative entropy

deficiency source the quadratic function of affinities: Next, from the Hirshfeld distribution function of eq 33, one
obtains (see also eq 38)
oo = Z Z T Ly T (56) w1
- =WOoF, (64)
3(0py)

In the absence of an externally applied magnetic field, the

reciprocity theorem of Onsageholds for the coupled local  Hence, by a straightforward integration by parts of the correla-
molecular subsystems: tion moment of eq 63,

L. =L 57

o OO R, 0= [op,WoF,d3p) = —p [ e, [B(aé—w)] d©)
That is, in the local linear Markoff process involving a network Pr
of electron flows between molecular fragments, the linear effect 3(0py)
of the tth affinity on therth flux is the same as that of thiéh = pf s d@©op) =p 6rka d(0p) = pOy
affinity on the localtth flux. This symmetry law reflects the 3(op;)

Maxwell (cross-differentiation) relation. More specifically, in (65)
accordance with eq 52,

Finally, inserting the preceding equation in eq 63 gives the
subsystem Onsager theorem in the absence of magnetic fields:
9(00) :
J = 97 (58) K= Lk
“rlo It should be realized that the modified definition of the
local affinities {0F} (eq 43a) and fluxes (eq 62)% =
O(dp/dt) = d(OpK)/dt}, sincepd! in dpk = pk — p is stationary,

r

so that by using eq 56 we can write

33 2 2 33 which we have used in the above derivation, gives rise to the
L, = (_r _1 ¥(%0) -1 8/90) = (7‘_) =L, modified set of kinetic coefficientg/i}, which differs fromL
0A)o 204070 2[ 07070 \07)o of eq 55. These conjugate forces and responses define the
corresponding local entropy production (from eq 47):
These Onsager reciprocity relations can be justified through d(0ASs)
fluctuations using the time symmetry of physical lawonsider oo =

= Z OF (66)

again the molecular subsystems in the initial equilibrium and dt
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Let us reexamine the KL entropy deficiency between the oilr
current (instantaneous) densities of subsystemand their  As-(r|F") = Z pN){In|—| = FFmn)} =
equilibrium (Hirshfeld) densitiepH : pko(r)

ASrlp") — FO IS o] (72)
ASPIA Y= 3 fpcIn(adnl’ or = f 2"

H| 501 — H i
fAsk(”PkH) dr = fAS(rIpH) dr (67) of the Legendre transforthS p, F|p°] __fAs'-(r|l_: ) dr |tse_lf _
(see eq 26). A reference to the constrained variational principle
of eqs 17, 25, and 26 (see also egs 18 and 19) indicates that its

It can be transformed into an explicit functional of displacements linear terms must identically vanish sin@s-/dp(r)lo =
{6FJ in the local intensities of eq 43a O0Fjo = 0. Thus, truncating the series at the second order term

gives (see eq 35b)
H
ASple"] = 3 [din p—ko ~In p—ko or = (mmp? = As(r|F") - ASL(flIFH)Io%
Pk Px - H _ = Hy—1 2
ZZ Z Sa 0P Opy ZZ (o) "(0p)"= 0 (73)

prk(':k —F)dr = prkélzk dr (68)
As we have already remarked before, the specific form of

which gives rise to the associated subsystem local intensitiesthe relative entropy source (egs 52, 56, and 66) will depend on
the adopted measure of the entropy deficiency density, all of
them predicting the unbiased Hirshfeld partitioning as the

H
F(rlod) =%=In p—ﬁ +1=0F +1 equilibrium scheme. But even for a given choice of the
Pk information distance, an identification of affinities and fluxes

k=1,2,..m (69) is not unique. We have identified in the local entropy production

expression of eq 52 the specific choice of these quantities, which

The second-order Taylor expansion &(r|pH) in powers closely follows that adopted in the irreversible thermodynamics
of 5p = p — p" = {Op} (cf. egs 35a and 35b] around the ©Of continuous systems. However, in eqs 62a, 62b, and 66, the
equilibrium densitieg p = '} for which{dF, = 0} and thus displacement in the Io<_:a| intensity relative to the Hirshfeld value
{FrlpdNlo = 1} gives (eq 43a)) rather then its gradient (eq 43b) has been used as an

alternative definition of a local thermodynamic force driving
1 the flows{ %}.

+ —Z Sa(rlp™) 5p|(r)]c3pk(r) As an additional illustration of this dependence, let us consider
o 2 the rate of the Legendre-transformed denditys-. Differentiat-
ing eq 73 gives

AS(r|p) = Z[Fk(rmk“)

1
= (3 +_ H 716 ?
Y 000+ 33 [0 1000 368 dGpy)

Opy
2 =o2=Y|—||—|=S 4% (74
B [6p(1)] " 2 Iy [ el D WA

2 Her
ac(r) since pl is stationary. For théth subsystem in a molecule,
= AS(r|p™ = Z AsP(r1pF) (70) this expression identifies yet another pair of affinitigs
measuring the Hirshfeld-referenced relative density displacement
and the conjugated flug of eq 62b. Clearly, this new entropy
sinceAs(r [p™)]o = 0 andsq(r |p™) = {[32AS(r|p)/0pk(r)dpi(r)]o} deficiency source gives rise to yet another set of kinetic
= [p(r)] 20w = st (eq 35b). Thus, one recovers the local coefficients: {4 = 371194} .
Gaussian distribution of Einstein’s quadratic approach (cf. eq Therefore, a choice of affinities and fluxes, even within a
37) approximating the exact Hirshfeld distribution function of given entropy deficiency representation, is by no means unique.
eq 33: It depends on the selected functional form of the information
distance density. As we have seen, the specific identification
We(plp™) = |_|WkG((§ pdod) (71a) of these parameters also affects the explicit form of the resulting
K kinetic coefficients and reciprocity relations.
G " The equilibrium distribution of electrons among constituent
W(Opilpi ) subsystems represents the statistical equilibrium (i.e., the average
— S ) Hy _ H effect over instantaneous fluctuations in the subsystem densities
= ok &H =P TAS(r o) — Flllec)lo Opd 0p(0F) preserving the overall densipy Clearly, theyse fluctua-
= o, exp{ — (20, ) (901} tions also affect the displacements of the local instantaneous
0p,\2 |ntenS|_t|eséF = OF(0p). The_refore, as a final e>_<ample of the
= o, exp{ _(2Dk0)1[(_k) ]} (71b) nonuniqueness of the local information-theoretic development,
P one could consider the entropy deficiency as a functional of
forcesoF of eqs 43a and 47 rather than of subsystem densities
At this point, instead of expanding the KL information p = p(6F) or their displacements, e. gAFOF] = AFp(5F)|p™]
distancedAs = Ag(r|p") (egs 5a and 70), one could expand in = Syfpk OFk dr = fOAS(OF) dr. The Legendre transform
powers ofdp the density A9 p(0F), FH|p° = fAS-(0F") dr or its fluctuationd A p(dF),
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FHIp = fOAS-(6FH) dr (eq 73) can be similarly treated as at each pointin space, leads to the stockholder electron densities

functionals of displacements in local intensities. of molecular fragments, which mark the entropy-stable equi-
The dependence of the instantaneous densities of subsystemiibrium state in the subsystem resolution. The resulting overlap-
on their conjugate intensities follows from eq 43a, ping Hirshfeld pieces of the molecular electron distribution
exhibit equalized chemical potentials, remove exactly the
PP eXPOF) = p '+ dp,  or nonadditivity of the overall entropy deficiency, and exhibit
H H 1 ) several information density equalization rules, which make them
Op=pi [€XpOF) — 1] = p 7| OF + 5(0F)" + ... attractive concepts for a chemical interpretattoh.
(75) With the present instantaneous development, we have ex-
plored the local thermodynamic analogies in the nonequilibrium
and henced(0pK)/d(0FK) = p. information-theoretic description of the vertical processes in
As an illustrative example, consider the symmetrized infor- molecular subsystems, which preserve the density of the system
mation distance of Kullbaék defining the divergence as a whole. The alternative representations of such a local
approach, corresponding to different measures of the missing
OAS[p] = AS[p, p"] = AFplp"] + AFp"|p] information or different choices of independent state parameters,
K have been examined, and the corresponding affinities (forces)
= Zfépkélzk dr = ZI(SA% (pd dr = and fluxes (responses) determining the relevant local entropy

deficiency source have been identified in close analogy to the
f 5A5K(p) dr (76) phenomenological irreversible thermodynandi€r the linear
dynamical processes in a molecule (Markoffian system), they
Substituting the expansion of eq 75 into eq 76 gives the imply the local reciprocity rules, analogues of the familiar
corresponding expansion of the subsystem divergence densityOnsager relationswhich reflect basic symmetries between the
linear effects of the subsystem affinities on fluxes. Therefore,
the thermodynamic analogies in the entropic description of
vertical processes in molecular subsystems can indeed be
extended to the nonequilibrium, instantaneous electron distribu-
_Z Z g OF, OF, tions and irreversible processes covering both density fluctua-
2 tions relative to the (stationary) Hirshfeld values and electron
flows between constituent fragments. The freedom of choosing
=9 pkH 8> 0 (77a) alternative state parameters is also reminiscent of that in ordinary
0 thermodynamics.
This and previous works show that the complementary
The above quadratic expansion demonstrates that this functionquantities of the entropy deficiency, based on the Shannon
indeed exhibits a stable equilibrium &F¢ = O (i.e., for the  entropy/information measure, provide a solid basis for extracting
Hirshfeld partitioning of the molecular electron density. The a chemical interpretation from the available molecular electron
local 0As( conjugate 0foF is defined by the derivative (see  densities in terms of atoms, functional groups, reactants, and

I

0AS(p) = pk“[(éFk)z - %(6&)3 + ]

P(OASY)
3(OF,) 3(OF)

ki —

egs 75 and 77a) so forth. The entropic concepts can also be used to probe
chemical bond multiplicities (subsystem connectivities) in
8(5A§(K) different molecular environment$ With the present develop-
————=0pt p OF = Z 0 OF, = 20, OF = X, ment, the Hirshfeld subsystems, previously regarded as static
d(6Fy) entities, can now also be viewed as the averages of the

(77b) instantaneous (dynamic) entities, with the distribution of local

fluctuations being related to the relevant missing information
density in the thermodynamic-like fashion. This opens the
possibility of extending the range of applications of the

The expression for the local divergence source relative to
the Hirshfeld value thus reads

K a0As S [dF information-theoretic tregtment of the submolecular processes

5o = d(eAs™) _ (0AS)| |dOF) =5 X to the realm of nonequilibrium states of subsystems (e.g., the
dt Z A(OF,) dt k7K electronic structure reorganization in a chemical reaction). In

(78) other words, this analysis establishes a theoretical framework

for an eventual dynamical indexing of the nonequilibrium
Therefore, in this divergencéF representation the rates of reactivity phenomena.

change in local intensitiejx = d(0Fy/dt}, determine the Clearly, the vertical, submolecular reality in the subsystem
relevant Kullback fluxes, whereas the-dependent parameters  e5o|ytion, so important to the language of chemistry, cannot
X of eq 77b, proportional to the corresponding Hirshfeld density e girectly validated experimentally since it is not an observable.
values, play the role of the conjugate affinities. _ It can be verified only indirectly by the demonstrated close
Clearly, one could also derive the corresponding relations 5nj0gy to the phenomenological thermodynamics. Nevertheless,
for the directed divergence measure of the information distance, ¢qnsistent chemical interpretations call for a theoretical frame-
0ASOF] = AYp(oF)lp"], treating the relative subsystem o introducing the causality relations between perturbations
intensitiesoF as independent state parametérs. and responses of molecular subsystems, paralleling the familiar
structure of the ordinary thermodynamics. With this develop-
ment, we have established basic conceptual ingredients of such
In information theory, the free-subsystem-referenced varia- an information-theoretic approach, filling a gap of the instan-
tional principle of the entropy deficiency, subject to the auxiliary taneous density fluctuations, which are always present in open
conditions of the exhaustive partitioning of the molecular density molecular subsystems. These fluctuations are the key ingredient

8. Conclusions
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of many chemical concepts (e.g., the chemical softness and (6) Nalewajski, R. F.; Loska, RTheor. Chem. Ac2001, 105 374.
Fukui functioriovﬁ). (7) (a) Nalewajski, R. F.; Bitka E.; Michalak, A.Int. J. Quantum
The information-theoretic outlook on the electronic structure gﬁ;? 2‘%%%24?47@%%?'(g)),\,';'%\?vggfilf'hﬁ_'?'é‘%trlﬁz’tfv'vzgi%m%'Cchheerm '
of molecular systems introduces a novel entropy representationa, submitted. (d) Nalewajski, R. F.; Broniatowska, Ghem. Phys. Lett.
of molecular systems, which we have shown to be vital for a Subf(g)ttesdh- C FBell S Technol. 1948 27, 379, 623. Sh
i ; i ; annon, C. Bell System Technol. , 379, 623. Shannon,
Iogal thermodynamic interpretation O.f chemical proce_sses. With C. E.; Weaver, WA Mathematical Theory of Communicatiddniversity
this development, the whole experience of the ordinary ther- of jjiinois: Urbana, IL, 1949. Abramson, Niformation Theory and Coding
modynamics can thus be employed in treating a variety of subtle McGraw-Hill: New York, 1963. Ash, R. Blnformation Theory Inter-
processes in chemistry. science: New York, 1965. Pfeifer, P. Eoncepts of Probability Theory
Dover: New York, 1978. Sears, S. B. Ph.D. Thesis, University of North
. Carolina, Chapel Hill, NC, 1980. Frieden, B. Rhysics from Fisher
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