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The elements of the information theoretic approach to instantaneous electron distributions between molecular
subsystems are developed by following the thermodynamic theory of fluctuations and irreversible processes.
The distribution function and information theoretic basis of the stockholder partitioning, defining the equilibrium
distributions of electrons among subsystems, are briefly summarized. The nonequilibrium (instantaneous)
local entropy deficiency and the state parameters and their associated intensive conjugates in the entropy
deficiency representation are introduced using the promolecule-referenced local measures of the information
distance (entropy deficiency) of Kullback and Leibler between the instantaneous subsystem electron densities,
conserving the overall molecular density and the free or Hirshfeld subsystem electron densities, respectively.
Within a local description, the Gaussian distribution function of Einstein’s theory is introduced, predicting a
local dispersion of the subsystem density to be proportional to the molecular density and the square root of
the free subsystem share in the promolecule density. The key concepts of the local irreversible thermodynamics
of molecular subsystems are introduced for alternative information theoretic entropy-deficiency representations.
They include the corresponding affinities (forces) and the conjugate fluxes (response quantities), which together
determine the local entropy deficiency source. The Onsager reciprocity relations are derived and justified
through fluctuations.

1. Introduction

The problem of partitioning a given molecular density into
pieces representing molecular fragments (e.g., those of the
bonded atoms in a molecule) has recently been given an
unbiased, information theoretic description, much in the spirit
of the phenomenological thermodynamic approach,1 in terms
of bonded fragments, which retain as much as possible the
information contained in the free atoms defining the promol-
ecule.2 It has been demonstrated that, in accordance with the
basic proposition of information theory, independently of the
information-distance measure applied (e.g., the entropy defi-
ciency (missing information) of Kullback and Leibler3), the
Hirshfeld2 stockholder partitioning appears as the entropic
equilibrium scheme.4-7 These stockholder subsystems represent
the bonded molecular fragments, which most resemble the free
subsystems, and they exhibit appealing local information-
distance equalization rules.3b-7 In such a thermodynamic-like
description, the information theory3,8 provides the local entropy
representation,4,5 complementary to the familiar energy repre-
sentation emphasized in most of the theories of the electronic
structure.

Combining this information theoretic approach with the
density functional theory9,10 results in a thermodynamic-like
description of equilibria in molecules and their constituent
fragments,4b,5covering both the horizontal displacements, from
one ground-state density to another and the vertical, internal
displacements, for the fixed molecular density. Similar informa-
tion-distance concepts have been used to extract the covalent
and ionic bond multiplicities,11 to design the molecular similarity

criteria,4a to define the promoted (polarized) atoms in a
molecule,6 and to relate the surprisal analysis of electron
densities in molecules to the familiar density-difference dia-
grams.7 The information theory has also been used to define
new descriptors of the donor-acceptor systems, which combine
both the energy and information entropy derivatives,5b-d,7 and
the Hirshfeld stockholder division rule has been generalized to
cover the unbiased partitioning of many-electron densities.5a

In chemistry, one is interested not only in the equilibrium
distributions of electrons in molecules and their constituent
fragments but also in processes characterized by rates. The
conceptual structure of such a phenomenological dynamical
description of the subsystem density fluctuations, determining
their softness characteristics,10 and instantaneous flows of
electrons in molecules, in the spirit of the irreversible thermo-
dynamics,1 calls for two types of conjugate quantities: affinities,
to describe the forces that drive a process, and fluxes, to describe
the responses to these forces.

The main purpose of this work is to investigate the elements
of such an instantaneous (nonequilibrium) approach to molecules
and their subsystems. More specifically, we seek an extension
of the previous, equilibrium information theoretic development
into the nonequilibrium local-thermodynamic description of
molecular subsystems, covering the instantaneous, fluctuating
state parameters and providing them an appropriate information
theoretic distribution function. The second moments of this
distribution will be examined in some detail. In particular, the
local dispersion of the instantaneous subsystem densities around
the corresponding equilibrium (Hirshfeld) values will be linked
to the overall molecular density and the subsystem share in the
promolecule density. The square of this dispersion will be shown* E-mail: nalewajs@chemia.uj.edu.pl.
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to be related to the subsystem local softness.10 The elements of
the irreversible thermodynamic, continuous description of the
molecular-density-conserving flows of electrons between sub-
systems will be established, including the alternative definitions
of affinities and fluxes, which together define the local entropy
deficiency source. The corresponding Onsager reciprocity
relations1 will be derived and justified through fluctuations.

2. Distribution Function of Fluctuating State Variables

In ordinary thermodynamics1 the instantaneous (i) extensive
parameters{xR

i} of systems in contact with the reservoirs (r)
appropriate to a given set of the free parametersxi ≡ (x0

i, x1
i,

..., xs
i) undergo continual fluctuations due to transfers between

the system and the reservoirs. Their equilibrium values{xR},
predicted by the maximum entropy principle, are the average
values denoted here by the〈 〉 brackets so that the average value
of the deviationδxR

i ≡ xR
i - xR vanishes by definition:

The reservoirs are assumed to be restrictive with respect to the
remaining variablesxc ≡ (xs+1, ...,xt), which are kept constant.

In the thermodynamic theory of fluctuations the average (or
the most probable) values of state parameters are determined
by the statistical distribution functionW(x) of all extensive
parametersx ≡ (xi, xc), which determines the probability

that simultaneouslyx0
i will be found in the range of dx0

i, x1
i

will be found in the range of dx1
i, etc., andxs

i will be found in
the range of dxs

i.
The thermodynamic distribution functionW(x) depends on

the instantaneous entropy, a function of the system extensive
parametersSi(x) ) Si(xi, xc), which assumes the equilibrium
value S(x) when the instantaneous extensive parameters are
given their average, equilibrium values:

A separate postulate1 specifies W(x) as the exponential
function of a displacement in the relevant Legendre transform
of Si(x), the generalized Massieu function, which is appropriate
for the actual reservoirs involved. More specifically, the
probability P(dxi) for a system in contact with the reservoirs
corresponding to the setxi is given by

Here,Ω is the normalizing constant such that

kB is Boltzmann’s constant,δSi(x) ) Si(x) - S(x), the sum is
over fluctuating variablesxR

i ∈ xi, {fR ) fRr} are the system
conjugate intensive parameters in the entropy representation,
equalized at the corresponding reservoir valuesfr,

whereSr(xr) is the entropy function of the reservoirs, withxr

standing for their state parameters. The displacement function
in the exponent of the distribution function of eq 4,

is defined with respect to the maximum value of the quantity
in the square brackets of the preceding equation over the
complete ranges of fluctuating variables:

Therefore, the quantity defined by eq 8 is no longer a function
of the fluctuating extensive parametersxi, being instead solely
determined by the corresponding intensive parameters of the
reservoirs,fr, and the system-constrained extensive parameters,
xc. In fact, it represents the Legendre transform of the equilib-
rium entropy1 since the most probable values ofxi andxi* (i.e.,
those maximizingW, a monotonically increasing function of
the exponentδ[Si(x) - ∑RfRxR

i]) are determined by the condition

Hence, the maximum of eq 8 occurs when the fluctuating
variables have their equilibrium values, which, for macroscopic
systems, are practically identical to the most probable values
xi* and 〈xi〉 ) xi* because of the sharply peaked nature of the
distribution function. The resulting ratio of the distribution width
to the average value is to the inverse (1/2) power in the extensive
parameters. The instantaneous entropy therefore takes the
equilibrium value of eq 3, and thus eq 8 defines the Legendre
transform of the equilibrium entropy, which corresponds to the
replacement of the fluctuating extensive variablesxi by their
entropy-intensive conjugatesf ) fr in the list of state parameters:

One also defines the Legendre transform of the instantaneous
entropy (i.e., the instantaneous Massieu function)

where the entropic instantaneous intensive parameters are
defined as the corresponding partial derivatives of the instan-
taneous entropy

Therefore, the equilibrium condition of eq 9 can be rephrased
as follows: the equilibrium values of the unconstrained
extensive parameters of a system in contact with reservoirs
maximizeSi[f i] at constantf i ) fr.

In thermodynamics, the average values of the state parameters
plus the full sets of moments are completely equivalent to the
distribution itself.1 It follows from the form of the distribution

〈xR
i〉 ≡ xR or 〈δ xR

i〉 ≡ 〈xR
i - xR 〉 ) 0

R ) 0, 1, 2, ...,s (1)

W(x) dx0
i dx1

i ... dxs
i ≡ W(x) dxi ) P(dxi) (2)

S(x) ≡ 〈Si(xi, xc)〉 ) Si(〈xi〉, xc) ) Si(x) (3)

W(x) ) Ω exp(kB
-1{δ [Si(x) - ∑

R
fR xR

i]}) )

Ω exp(kB
-1[δSi(x) - ∑

R
fR δ xR

i]) (4)

∫W(x) dxi ) 1 (5)

f ≡ (f0, ..., fs) ) fr ≡ (f0
r, ..., fs

r) )
∂Sr(xr)

∂xr
(6)

δ[Si(x) - ∑
R

fRxR
i]

) [Si(x) - ∑
R

fR
rxR

i] - [S(x) - ∑
R

fR
rxR]

≡ Si(fr, xc) - S(fr, xc) ) δSi(x) - ∑
R

fR δxR
i (7)

S(fr, xc) ) maxi[S
i(xi, xc) - ∑

R
fR

rxR
i] ) S(x) - ∑

R
fR

rxR

(8)

Si(xi, xc) - ∑
R

fR
rxR

i ) maximum (9)

S(fr, xc) ) Si(〈xi〉, xc) - ∑
R

fR
r〈xR

i〉 ≡ S[f r] (10)

Si(f i, xc) ) Si(xi, xc) - ∑
R

fR
ixR

i ≡ Si[f i] (11)

f i )
∂Si(xi, xc)

∂xi
(12)
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function of eq 4 that the thermodynamic fluctuation (second)
moment is given by the expression1

where the constraintsc(â) ) (f0, ..., fâ-1, fâ+1, ... fs, xc) ≡
(f′â, xc) andc(R) ) (f′R, xc). In particular, forR ) â, the mean-
square deviation〈(δxR

i)2〉 ) 〈(xR
i)2〉 - xR

2 measures the
magnitude of fluctuations of the variablexR

i, with the ratio
〈(δxR

i)2〉1/2/xR characterizing the “sharpness” of theRth section
of the distribution function. The general moment of eq 13, for
R * â, similarly reflects the correlation between the fluctuations
in xR

i andxâ
i.

In what follows, we shall examine fluctuations in the
distribution of electrons in a molecule and its constituent
fragments. The molecular system can be considered to be
externally closed or open. The former case corresponds to the
“frozen” (integer) overall number of electronsN ) ∫F(r ) dr or
to the fixed electron densityF, whereas the latter case represents
a system in contact with a macrospopic reservoir of electrons.
In the externally open system, its grand canonical ensemble
average (fractional) number of electrons, resulting from the
integration of the corresponding ensemble average density,
exhibits different instantaneous values at a given location in
space because of the electron transfer to and from the reservoir.

One can also examine the state of subsystems (i.e., molecular
fragments, e.g., the bonded atoms in molecules (AIM), which
can also be regarded as externally (or mutually) closed or open.
The instantaneous densities of subsystems,Gi(r ) ) {Fk

i(r )},
giving rise to the fixed molecular electron density,F(r ) )
∑k Fk

i(r ), and the corresponding instantaneous electron popula-
tions, Ni ) ∫Gi(r ) dr ) {Nk

i}, also fluctuate while preserving
the overall density,F(r ), and number of electrons,N ) ∑k Nk

i.
Alternatively, one can treat a small portion of a molecule as

a local subsystem, with the corresponding molecular remainder
then representing the complementary microscopic reservoir,
which is infinitely larger than the local subsystem itself. The
small subsystem, chosen mentally to be of constant (infinitesi-
mal) volume, undergoes intrinsic fluctuations in the electron
(number) density, and it exhibits the associated fluctuations in
the energy density.

3. Equilibrium Distribution of Electrons in Molecular
Subsystems

Let us consider the fluctuations exhibited by the instantaneous
densitiesGi(r ) and electron populationsNi of molecular frag-
ments, e.g., AIM, reactants, functional groups, etc., relative to
the Hirshfeld densities,2,4-7 GH(r ) ) {Fk

H(r )}, and the associated
numbers of electrons,NH ) ∫GH(r ) dr ) {Nk

H}, characterizing
the equilibrium subsystems.4 These stockholder pieces of a given
molecular densityF(r ) are defined by the relations

involving the unbiased local enhancement factor,w(r ), of the
ground-state densities of the free subsystems,G0(r ) ) {Fk

0(r )},
common to all constituent fragments. Here,F0(r ) is the electron

density of the promolecule,2 consisting of the free subsystem
densities shifted to their actual positions in a molecule, which
also serves as the reference in diagrams displaying the density
difference due to bond formation:∆F(r ) ) F(r ) - F0(r ).

The unbiased fragment densities of eq 14, obeying Hirshfeld’s
common sense stockholder principle2, that each fragment
participates in the local molecular “profit”F(r ) in proportion
to its local share in the promolecular “investment”F0(r ),

have a solid basis in the information theory3,8 since they
minimize the entropy deficiency (missing information) of
Kullback and Leibler,3

or other information-distance measures between the instanta-
neous (trial) subsystem densitiesGi(r ) and the fixed reference
densitiesG0(r ) of the isolated fragments, subject to the local
constraint of the exhaustive partitioning,F(r ) ) ∑k Fk

i(r ),4-7

where the Lagrange multiplier functionF(r ) can be determined
from the value of the constraint. Thus, given the densities of
isolated atoms, which provide a natural reference in chemistry,
this minimum-entropy deficiency principle determines the
subsystem densities in a molecule as a function of the molecular
ground-state densityF. This is in the spirit of the density
functional theory,9,10according to whichF, or the shape function
p ) F/N,12 determines all of the physical properties of the
molecular system under consideration. The Hirshfeld pieces of
the molecular density were also shown to satisfy some objective
criteria of transferability.13

The Lagrange multiplier function in eq 17 represents the
intersubsystem equalized local intensive parameter,

We have explicitly indicated in the preceding equation thatF(r )
is the (intensive) entropy-deficiency conjugate of the (extensive)
molecular and Hirshfeld densities. Thus, this overall function

〈δxR
i δxâ

i〉 ) ∫δxR
i δxâ

i W(x) dxi )

-kB(∂xR

∂fâ)
c(â)

) -kB(∂xâ

∂fR)
c(R)

(13)

GH(r ) ) G0(r ) [ F(r )

F0(r )] ≡ G0(r ) w(r ) F(r ) ) ∑
k

Fk
H(r )

F0(r ) ) ∑
k

Fk
0(r ) (14)

Dk
H(r ) ≡ Fk

H(r )

F(r )
)

Fk
0(r )

F0(r )
≡ Dk

0(r ) (15)

∆Si[Gi|G0] ) ∑
k
∫Fk

i(r ) ln[Fk
i(r )

Fk
0(r )] dr

≡ ∑
k
∫∆sk

i(Fk
i(r ); Fk

0(r )) dr ≡

∫∆si(Gi(r ); G0(r )) dr (16)

mini{∆Si[Gi|G0] - ∫F(r ) [∑
k

Fk
i(r ) - F(r )] dr} )

∆S[GH|G0]

≡ ∑
k
∫∆sk(Fk

H(r ); Fk
0(r )) dr )

∫F(r ) ln D(r ) dr ≡ ∆S[F|F0] ≡
∫∆s(F(r ); F0(r )) dr (17)

F(r ) ) 1 + ln w(r ) )
δ∆S[F|F0]

δF(r )
)

∂∆s(F(r ); F0(r ))

∂F(r )

)
∂∆sk(Gk

H(r ); Fk
0(r ))

∂Fk
H(r )

(18)
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also determines the corresponding intensive conjugatesFH(r )
of the subsystem densities:

where the unit vector1 ) (1, 1, ...). In eq 19, the functional
derivative with respect to the subsystem density is the partial
derivative calculated for the fixed densities of the remaining
subsystems. It follows from eq 18 that all of these entropy-
deficiency conjugates of the electron densities measure the
surprisal function of the overall distribution of electrons in a
molecule relative to that in the corresponding promolecule
reference:

It should be observed that eqs 14, 18, and 19 imply that the
local values of the subsystem surprisals are equalized for the
Hirshfeld partitioning at the corresponding value of the surprisal
function of the system as a whole:4,5,7

Within the information theoretic thermodynamics of molec-
ular systems and their fragments,4 the minimum-entropy defi-
ciency principle of eq 17 replaces the familiar maximum-entropy
principle of ordinary thermodynamics.1 (See eqs 8 and 9) Thus,
the maximum principle of the generalized Massieu function of
eq 8, in which the equilibrium values of the unconstrained
parameters in a system in contact with reservoirs characterized
by their intensive parametersfr maximizeS[fr] at constantf i )
fr, will be replaced in the information theoretic approach by an
appropriate extremum principle of the relevant Legendre
transform of the entropy deficiency.

For example, eqs 18 and 19 identify the Lagrange multiplier
function associated with the local constraint of the exhaustive
partitioning as being equal to the local intensive conjugates
{Fk

H(r )} of the equilibrium (Hirshfeld) subsystem densities
(equilibrium extensive variables):Fk

H(r ) ) F(r ), k ) 1, 2, ...,
m. Therefore, the auxiliary functional of the optimum (Hirshfeld)
densities in eq 17 is

where the instantaneous overall densityFi ) ∑k Fk
i, replaces

the extensive variables,F or GH, with their intensive conjugates,
F or F, in the list of state parameters. As also shown in eq 22,

this functional defines the equilibrium Legendre transform
of the entropy deficiency:∆S[GH|G0, F] ) ∆S[F|F0, F] )
∆S[FH|G0, F].

One could similarly introduce the instantaneous intensive
entropy-deficiency parameters defined as the corresponding
partial functional derivatives of the instantaneous entropy
deficiency of eq 16:

defining the corresponding Legendre transform

The equilibrium values of the “intensive” subsystem variables
for the Hirshfeld subsystem densities,Fi(r ) ) FH(r ) ) F(r )1,
can be interpreted as resulting from coupling of the molecular
fragments to a common Hirshfeld reservoir characterized by
the entropic intensityF(r ) related to the global molecular
surprisal functionI(r ). This observation stresses the global
equilibrium character of the Hirshfeld partitioning with respect
to the hypothetical intra- and intersubsystem flows of electrons.4

The subsystem analogue of eq 10 now reads

Thus, the minimum-entropy deficiency principle of eq 17 can
be interpreted as (cf. eqs 8-11)

In other words, the equilibrium subsystem densities{〈Fk
i(r )〉 )

Fk
H(r )} of a molecular system in contact with the Hirshfeld

“reservoir”, exhibiting the entropy deficiency intensityF(r ),
which forces equalization of the subsystem surprisals at this
global surprisal level, minimize∆Si[Gi, FH[F]|G0] at fixed
Fk

i(r ) ) Fk
H(r ) ) F(r ). This is precisely the minimum principle

yielding the generalized Massieu function of eq 25, the Legendre
transform of the equilibrium entropy deficiency, in which the
subsystem densities have been replaced by the local Hirshfeld
intensities in the list of the subsystem state parameters.

The final result of eq 26 directly follows from eqs 14-18
and the overall normalization of the Hirshfeld subsystem
densities:

FH(r ) )
δ∆S[GH|G0]

δGH(r )
)

∂∆s(GH(r ); F0(r ))

∂GH(r )
) F(r )1 (19)

I[F(r )|F0(r )] ) ln w(r ) ≡ I(r ) (20)

I[Fk
H(r )|Fk

0(r )] ) ln[Fk
H(r )

Fk
0(r )] ≡ Ik

H(r ) ) I(r )

k ) 1, 2, ...,m (21)

∆S[GH|G0, F] ) mini{∆Si[Gi|G0] - ∫F(r )Fi(r ) dr} )

∆S[F|F0] - ∫F(r ) F(r ) dr

) ∆S[F|F0] - ∫{δ∆S[F|F0]

δF(r ) }F(r ) dr ≡

∆S[F|F0, F]

) ∆S[GH|G0] - ∫{FH(r )}‚GH(r ) dr

) ∆S[GH|G0] - ∫ {δ∆S[GH|G0]

δGH(r ) }‚GH(r ) dr ≡

∆S[FH|G0, F] (22)

Fi(r ) ≡ δ∆Si[Gi|G0]

δGi(r )
)

∂∆si(Gi(r ); G0(r ))

∂Gi(r )

) {Fk
i(r ) )

∂∆sk
i(Fk

i(r ); Fk
0(r ))

∂Fk
i(r )

)

1 + ln[Fk
i(r )

Fk
0(r )] ≡ 1 + Ik

i(r )} (23)

∆Si[Gi, Fi|G0] ) ∆Si[Gi|G0] -

∑
k
∫Fk

i(r ) Fk
i(r ) dr ≡ ∑

k

∆sk
i[Fk

i|Fk
0, F] (24)

∆S[FH|G0, F] ) ∆S[GH[FH]|G0, F] -

∑
k
∫Fk

H(r ) Fk
H(r ) dr ) mini ∆Si[Gi, FH[F]|G0] (25)

mini{∆Si[Gi|G0] - ∑
k
∫Fk

H(r ) Fk
i(r ) dr} ≡

mini∆Si[Gi, FH[F]|G0]

) ∆S[GH(FH)|G0] - ∑
k
∫Fk

H(r ) Fk
H(r ) dr )

∆S[FH|G0, F] ) -N (26)
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Also, because of the additive character of this Legendre
transform (see eq 24), its overall value can be decomposed
into the corresponding Hirshfeld subsystem contributions
∆sk[Fk

H|Fk
0, F] equal to the negative value of the corresponding

normalizationNk
H of the electron density of the “stockholder”

molecular fragment:

4. Local Description of the Density-Partitioning Problem

The above global development can be given an equivalent,
local interpretation by taking all quantities per unit volume and
using the integrand∆si(Gi(r ); G0(r )) ≡ ∆si(r ) ≡ ∑k∆sk

i(r ) of
the entropy deficiency functional in the subsystem resolution
(eq 16) as a measure of the local subsystem’s missing informa-
tion (entropy deficiency) density. Its equilibrium value is reached
for the Hirshfeld densities of molecular fragments when
〈∆si(r )〉 ) ∆si(GH(r ); G0(r )) ≡ ∆s(r ) ≡ ∑k∆sk(r ) and the
corresponding entropy deficiency conjugates of the local value
of the subsystem electron densities are intersubsystem equal-
ized at the overall intensity value:FH(r ) ) ∂∆s(r )/∂GH(r ) )
{Fk

H[F; r ] ≡ Fk
H(r ) ) ∂∆sk(r )/∂Fk

H(r ) ) F(r )}. The local
instantaneous intensities are similarly defined by the partial
derivatives of eq 23. The local analogues of the instantaneous
Legendre transform of eq 24 and the entropy deficiency Massieu
function of eq 25 are

Hence, the density-conservingFi(r ) ) F(r ) instantaneous
divisions of a given molecular densityF(r ) give ∆s[F(r )] )
∆si[Fi(r )] ) -F(r ).

As indicated above, the subsystem contributions to these local
Legendre transforms are also additive. The equilibrium function
∆s[FH(r )] is thus “normalized” to the negative value of the
molecular density, with the negative subsystem densities
-Fk

H(r ) ) -Fk
H[F; r ] providing the corresponding subsystem

contributions∆sk[Fk
H(r )]. It also follows from the preceding

two equations that

where the partial differentiation implies that all remaining
variables of the local entropic Legendre transform are held fixed.

To simplify notation, in what follows we shall omit the
specification of a given position in space, which specifies a
particular local subsystem under consideration:F(r ) ) F,
Fk

H[F;r ] ) Fk
H[F], ∆si(Gi(r ); G0(r )) ) ∆si(Gi;G0), ∆sk[Fk

H(r )] )
∆sk[Fk

H], and so forth.

5. Local Gaussian Distribution Function

It follows from eqs 16 and 30 that the local information
distance analogue of the exponent in the thermodynamic
distribution function of eq 4,

where the factorκ ) F-1 is chosen to make the exponent
dimensionless, measures the displacement per electron of the
local instantaneous information distance relative to that of the
Hirshfeld fragments. As indicated in the last equation, the overall
displacementδ∆si is additive over the constituent molecular
fragment components{δ∆sk

i}.
The local information-theoretic analogue of the thermody-

namic distribution function of eq 4 thus reads

where{Wk(Fk
i)} are the respective subsystem distributions and

ω ) Πk ωk is the overall normalization constant with the
subsystem normalization factors{ωk} such that

The associated Gaussian distribution of the familiar Einstein
method1 can be obtained be expanding the local instantaneous
entropy deficiency∆si around the equilibrium value∆s|0 for
δGi ≡ Gi - GH ) 0 in powers of the local density displacements
δGi ) {δFk

i},

∆S[FH|G0, F] ) -∫ ∑
k

Fk
H(r ) dr ) -∫F(r ) dr ) -N (27)

∆S[FH|G0, F] ≡ ∑
k

∆sk[Fk
H|Fk

0, F] )

- ∑
k
∫Fk

H(r ) dr ≡ -∑
k

Nk
H (28)

∆si(Gi(r ), Fi(r ); G0(r )) ) ∆si(Gi(r ); G0(r )) -

∑
k

Fk
i(r ) Fk

i(r ) ≡ ∆si[Fi(r )]

≡ ∑
k

∆sk
i(Fk

i(r ), Fk
i(r ); Fk

0(r )) ≡ ∑
k

∆sk
i[Fk

i(r )] )

-∑
k

Fk
i(r ) ) -Fi(r ) (29)

∆s(FH(r ); G0(r ), F(r )) ) ∆s(GH[FH[F; r ]; r ]; G0(r ))

-∑
k

Fk
H[F; r ] Fk

H[F; r ] ≡ ∆s[FH(r )]

) ∆s(F(r ); F0(r )) - F(r ) F(r ) ≡ ∆s[F(r )]

) mini∆si(Gi(r ), FH[F; r ]; G0(r )) ≡
∑

k

∆sk(Fk
H(r ), Fk

H(r ); Fk
0(r ), F(r )) ≡

∑
k

∆sk[Fk
H(r )]

) -∑
k

Fk
H(r ) ) -F(r ) (30)

∂∆s[F(r )]

∂F(r )
) -F(r )

∂∆s[FH(r )]

∂FH(r )
) -GH(r )

∂∆sk
i[Fk

i(r )]

∂Fk
i(r )

) -Fk
i(r ) (31)

- κ{∆si(Gi; G0) - ∑
k

Fk
H Fk

i - ∆s[FH]}

) -κ[∆s i(Gi; G0) - ∆s(GH[F]; G0)

- ∑
k

Fk
H (Fk

i - Fk
H)]

≡ -κ [δ∆si(Gi; F, G0) - ∑
k

Fk
H δFk

i] )

-κ ∑
k

[δ∆sk
i(Fk

i; F, Fk
0) - Fk

H δFk
i] (32)

W(Gi) ) ω exp{-F-1[δ∆si(Gi; F, G0) - ∑
k

Fk
H δFk

i]}

) Πkωk exp{-F-1[δ∆sk
i(Fk

i; F, Fk
0) -

Fk
H δFk

i]} ≡ ∏
k

Wk(Fk
i) (33)

∫Wk(Fk
i) dFk

i ) 1 k ) 1, 2, ...,m (34)
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whereFk
i|0 ) Fk

H ) F (eq 18) and

Therefore, if one now neglects the higher-order terms and
changes the normalization accordingly, one obtains approxi-
mately (see eq 15)

Substituting this expression into eq 33 finally gives the Gaussian
distribution in terms of the relative density displacements
δyi ≡ {δyk

i) δFk
i/F},

A comparison between theWk
G(δyk

i) function and the standard
normal distribution identifies the local dispersion (spread) of
Fk

i aroundFk
H, σk

H ≡ σ[δFk
i] ) F(Dk

0)1/2 and the subsystem
distribution normalization factor$k ) (σk

H)-1(2π)-1/2. This
dispersion of the local value of the instantaneous subsystem
density implies the equivalent relative dispersionσ[δyk

i] )
(Dk

0)1/2 ) σ[δFk
i]/F.

The product of the uncorrelated subsystem Gaussian distribu-
tions of eq 37 gives correctly the second moments, which are
of main physical interest. In particular, it predicts the local
dispersion of the subsystem density to be proportional to the
molecular density and the square root of the subsystem share
in the molecule/promolecule (eq 15). Thus, as intuitively
expected, the largest local dispersion is exhibited by the AIM
that contributes the most to the local value of molecular density.
It has been argued recently5 that the local softness of the
Hirshfeld subsystem is proportional to the global softness of
the molecule as a whole and the subsystem share factorDk

0.
We can therefore conclude that the subsystem local softness
reflects the square of the dispersion in the local subsystem
density. The predicted expression for the dispersion of the
fragment density can also be interpreted as an additional local
equalization rule for the relative subsystem dispersions:
σk

H(Dk
0)-1/2 ) F, k ) 1, 2, ...,m.

The local second moments of the Hirshfeld subsystem
densities can be also expressed in the form of eq 13. First, we
observe that by using eqs 31 and 32 one can express the
derivative

Thus, the diagonal second moment of eq 13 can be written as

Here we have used eq 1 and eqs 14, 15, 37, and 39 to calculate
the derivatives

The corresponding expression for the off-diagonal second
moment reads

since the distribution of eq 37 predicts that a positive fluctuation
δFk

i is equally likely to be accompanied by the fluctuations|δFl
i|

and-|δFl
i|; that is,δFk

i andδFl
i are uncorrelated.

It should be emphasized that the partial derivatives in eqs
38-42 are calculated for the fixed (intersubsystem-equalized)
Hirshfeld intensities of the remaining subsystems. The partial
differentiation with respect toFk

H thus corresponds to a
thermodynamic description in which thekth subsystem is
coupled to the separately controlled local reservoir characterized
by the intensityFk

H. Thus, in the derivative of eq 40, one
monitors the response inFk

H to a given displacement inFk
H,

with the remaining local density components being coupled to
the common reservoir of the initial equilibrium.

To further simplify notation, in what follows we shall drop
the upper index i indicating the instantaneous quantity:δFk

i )
δFk, δ∆si ) δ∆s, and so forth. The trial densityFk of a entropy/
information variational principle could be also interpreted as
the nonequilibrium instantaneous density of subsystemk.

6. Affinities, Fluxes, and Reciprocity Relations

Following the conceptual structure of the phenomenological
irreversible thermodynamics,1 we require two types of quanti-
ties: affinities, to describe the thermodynamic forces that drive
a process, and fluxes, mesuring the responses to these forces.
The fluxes vanish when the affinities vanish, and nonzero
affinities lead to nonzero fluxes. The rates of irreversible
processes are characterized by the relationship between fluxes
and affinities. Clearly, specific definitions of such quantities
are expected to depend on the measure of the information

δ∆si ) ∆si - ∆s|0 ) ∑
k

Fk
i|0 δFk

i +

1

2
∑

k
∑

l

δFk
i skl

H δFl
i + ..., (35a)

skl
H ) ∂

2∆s
∂Fk∂Fl

|
0

) ∂

∂Fk[1 + ln( Fl

Fl
0)]|

0

)

(Fk
H)-1δkl ) [ F0

(FFk
0)]δkl (35b)

δ∆si = δ∆s(2) ) F∑
k

δFk
i +

1

2
∑

k [ F0

(FFk
0)](δFk

i)2 )

FδFi +
1

2
∑

k

(FDk
0) -1(δFk

i)2 (36)

W(δyi) = W(2)(δyi) )
$ exp{-(F)-1[δ∆s(2) - ∑

k

Fk
H δFk

i]} )

∏
k

$k exp[-(2Dk
0) -1(δyk

i)2]

≡ ∏
k

Wk
G(δyk

i) ≡ ∏
k

Wk
G(δFk

i) (37)

∂W

∂Fk
H

) F-1(Fk
i +

∂∆s[FH]

∂Fk
H )W ) F-1(Fk

i - Fk
H)W )

F-1δFk
i W (38)

(σk
H)2 ) 〈(δFk

i)2〉 ) ∫(δFk
i)2W dGi ) F ∫δFk

i( ∂W

∂Fk
H) dGi

) F ∂

∂Fk
H

[∫δFk
i W dGi] - F∫W[∂(δFk

i)

∂Fk
H ] dGi

) F(∂〈δFk
i〉

∂Fk
H ) + F(∂Fk

H

∂Fk
H) ) F(∂Fk

H

∂Fk
H) ) FFk

H ) F2Dk
0

(39)

∂(δFk
i)

∂Fk
H

) -
∂Fk

H

∂Fk
H

)
∂

2∆s[FH]

∂Fk
H
∂Fk

H
≡ Skk (40)

∂Fk
H

∂Fk
H

) FDk
0 ) Fk

H k ) 1, 2, ...,m (41)

〈δFk
i δFl

i〉 ) F(∂Fk
H

∂Fl
H) ) F(∂Fl

H

∂Fk
H) ) -F{∂

2∆s[FH]

∂Fk
H
∂Fl

H} ≡

-FSkl ) 0 (42)
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distance (entropy deficiency) used in the information entropy
representation. The identification of the local affinities for a
molecular system and its fragments will be carried out by
considering the rate of the local production of the entropy
deficiency in a continuous system.

As we have already indicated in eqs 16 and 17, one defines
the entropy deficiency in a nonequilibrium system by postulat-
ing, as in the irreversible thermodynamics,1 that the functional
dependence of the local instantaneous information distance
density on the local instantaneous parameter is taken to be
identical to the dependence in the Hirshfeld equilibrium.

There are two classes of changes in the electronic structure
of interest in chemistry: the so-called vertical displacement
redistributes electrons among subsystems while preserving the
density of the system as a whole, and the horizontal displace-
ment represents a transition from one ground-state density to
another.5 The former case, to which we limit the present
analysis, corresponds to the fixed overall density and thus to
the fixed electronic energy and overall missing information
relative to the promolecule reference; only the energies of the
embedded subsystems4b and the subsystem entropy deficiencies
change as a result of such vertical variations in the electronic
structure of molecular fragments. The latter case, representing
a more general change of the system as a whole, would require
additional extensive state variables representing the shift in the
system’s overall entropy deficiency, giving rise to the associated
information-theoretic temperature,4b measured by the energy
conjugate of the global entropy deficiency.

Let us first examine the subsystem affinities{Fk )
(FkR, R ) x, y, z), k ) 1, 2, ...,m} ≡ {Ft} (i.e., generalized
thermodynamic forces of subsystems that drive the process of
local change in the subsystem-resolved electronic structure). As
in the irreversible thermodynamics, we introduce affinities as
gradients of the intensive parameters that are appropriate for a
given entropy deficiency representation. In this section, we
consider the illustrative example of the Kullback-Leibler3

measure of the missing information (eq 16). To have forces
that identically vanish at the equilibrium (Hirshfeld) partitioning
of a given (fixed) molecular density, we define affinities relative
to the Hirshfeld equilibrium as gradients of the local displace-
ments in the subsystem intensities, which are conjugates of the
density displacements

Here, the local affinity (∇Fk
H)/Fk

H associated with thekth
Hirshfeld molecular fragment is

where the share factor contribution is

The responses to these forces are measured by the local
subsystem fluxes characterized by the rates of change of the
local extensive parameters (subsystem densitiesFi and their sum
F). As in the irreversible thermodynamics of continuous systems,
they are defined here as components of the corresponding local
vector current densities of electrons:{Jk ) (JkR , R ) x, y, z),
k ) 1, 2, ...,m} ≡ {Jr} and J ) ∑k Jk. The magnitude and
direction of each vector reflect the amount and direction,
respectively, of the corresponding electron flow across a unit
area in unit time. The instantaneous local current densityJs )
Js[F] of the entropy deficiency transported through a unit area
per unit time is then given by a combination of the subsystem
electron flows

suggested by the differential of∆S[G|GH] (see eq 43a),

We now seek to write the rate of the local production of the
entropy deficiency density,

relative to the Hirshfeld value of eq 17,∆s[GH] ) F ln w. A
displacement in the local entropy deficiency source

is then equal to the rate of a local increase of the entropy
deficiency per unit volume,∂(δ∆s)/∂t, minus the entropy leaving
the region,-∇‚Js. This statement summarizes the continuity
of the missing information:

Moreover, since the extensive parameters can be neither
produced nor destroyed, the equation of continuity for the
displacementδFk ) Fk - Fk

H of the kth subsystem electron
density and that for the overall density become

Therefore, combining the continuity equations (50 and 51)
with eq 46 gives the familiar expression1 for the displacement
of the entropy deficiency production relative to the Hirshfeld
level in terms of the products of forces and fluxes,

δFk(r ) ≡ Fk(r ) - Fk
H(r ) ) ln[ Fk(r )

Fk
H(r )]
)

∂∆S[G|G0]

∂Fk(r )
-

∂∆S[GH|G0]

∂Fk
H(r )

≡ ∂(δ∆S[G|GH])

∂[δFk(r )]
(43a)

Fk ) ∇δFk ) ∇[ln( Fk

Fk
H)] ) ∇[ln( Fk

Fk
0) - ln(Fk

H

Fk
0)] )

(∇Fk)

Fk
-

(∇Fk
H)

Fk
H

(43b)

(∇Fk
H)

Fk
H

)
(∇Fk

0)

Fk
0

+
(∇w)

w
)

(∇F)
F

+
(∇Dk

0)

Dk
0

(44)

(∇Dk
0)

Dk
0

)
(∇Fk

0)

Fk
0

-
(∇F0)

F0
(45)

Js ) ∑
k

δFk Jk ) ∑
k

ln( Fk

Fk
H)Jk (46)

dδ∆s ) ∑
k

∂(δ∆S[G|GH])

∂[δFk(r )]
d(δFk) ) ∑

k

δFk d(δFk) (47)

δ∆s≡ ∆s[G] - ∆s[GH] (48)

δσ ) σ[G] - σ[GH] ≡ d(δ∆s)
dt

(49)

d(δ∆s)
dt

≡ δσ )
∂(δ∆s)

∂t
+ ∇‚Js (50)

0 )
∂(δFk)

∂ t
+ ∇‚Jk k ) 1, 2, ...,m and

0 )
∂(δF)

∂t
+ ∇‚J (51)

δσ ) ∑
k

Fk‚Jk ≡ ∑
r

FrJr (52)
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since from eqs 43a, 47, and 51

For the Markoffian system (with no dynamical “memory”),
to which we restrict this analysis, each local flux depends on
all relative intensitiesF - FH ) {δFk ) ln(Fk/Fk

H)} and affinities
{Ft}

and it vanishes, by definition, when all affinities vanish. The
Hirshfeld AIM do resemble free atoms to a high degree.6,7

However, this type of memory of the fragment free origin in
theseparated subsystem limit is automatically embedded in the
entropy deficiency functional of eq 16 through the reference
densities.

ExpandingJr in powers of the affinities and neglecting the
third-order and higher-order terms gives the linear effect of all
affinities on therth flux

in terms of the kinetic coefficients{Ltr ) Ltr({δFk})},

calculated for the equilibrium (Hirshfeld) subsystems for
which all affinities vanish identically,δFH ) 0, and thus
{Fk ) ∇(δFk

H) ) 0}. The representative coefficientLtr measures
the local linear effect of thetth affinity on the rth flux.
Combining eqs 52 and 54 gives the for the relative entropy
deficiency source the quadratic function of affinities:

In the absence of an externally applied magnetic field, the
reciprocity theorem of Onsager1 holds for the coupled local
molecular subsystems:

That is, in the local linear Markoff process involving a network
of electron flows between molecular fragments, the linear effect
of the tth affinity on therth flux is the same as that of therth
affinity on the localtth flux. This symmetry law reflects the
Maxwell (cross-differentiation) relation. More specifically, in
accordance with eq 52,

so that by using eq 56 we can write

These Onsager reciprocity relations can be justified through
fluctuations using the time symmetry of physical laws.1 Consider
again the molecular subsystems in the initial equilibrium and

the spontaneous fluctuationsδG ) G - GH of the local extensive
parametersG around the corresponding Hirshfeld valuesGH. The
correlation moment〈δFk δFl(τ)〉, whereδFl is observed at time
τ after δFk, must remain unchanged if we replaceτ by (-τ).
Hence, taking into account that only relative time between the
two correlated densities is significant,

Subtracting〈δFk δFl〉 from each side of this equation and
dividing by τ gives in the limitτ f 0 the associated relation
involving time derivatives of the instantaneous densities of
subsystems:

Hence, assuming the linear dynamical process of eq 54 for a
decay of the fluctuationδ(dFk/dt) through the phenomenological
equations

whereδFk ) Fk - Fk
H (see eqs 18 and 23) and

gives

Next, from the Hirshfeld distribution function of eq 33, one
obtains (see also eq 38)

Hence, by a straightforward integration by parts of the correla-
tion moment of eq 63,

Finally, inserting the preceding equation in eq 63 gives the
subsystem Onsager theorem in the absence of magnetic fields:
Lkl ) Llk.

It should be realized that the modified definition of the
local affinities {δFk} (eq 43a) and fluxes (eq 62b){Jk )
δ(dFk/dt) ) d(δFk)/dt}, sinceFk

H in δFk ) Fk - Fk
H is stationary,

which we have used in the above derivation, gives rise to the
modified set of kinetic coefficients{Llk}, which differs fromL
of eq 55. These conjugate forces and responses define the
corresponding local entropy production (from eq 47):

〈δFk δFl(τ)〉 ) 〈δFk(-τ) δFl〉 ) 〈δFk(τ) δFl〉 (60)

〈δFk δ(dFl

dt )〉 ) 〈δ(dFk

dt ) δFl〉 (61)

δ(dFk

dt ) ) ∑
l

δFl Llk k ) 1, 2, ...,m (62a)

Llk )
∂[δ(dFk

dt )]
∂(δFl)

≡ ∂J k

∂(δFl)
(62b)

∑
r

Lrl 〈δFk δFr〉 ) ∑
r

Lrk 〈δFr δFl〉 (63)

-F[ ∂W
∂(δFk)] ) W δFk (64)

〈δFk δFr〉 ) ∫δFk W δFr d(δG) ) -F∫δFk [ ∂W
∂(δFr)] d(δG)

) F∫W[∂(δFk)

∂(δFr)] d(δG) ) F δrk∫W d(δG) ) Fδrk

(65)

δσ )
d(δ∆s)

dt
) ∑

k

δFk J k (66)

∑
k

ln( Fk

Fk
H)∇‚Jk ) -

∂(δ∆s)

∂t

Jr ) Jr({Ft }, {δFk}) (53)

Jr ) ∑
t

Ft Ltr (54)

L ≡ {L kl ≡ ( ∂Jl

∂Fk
)

0
} ≡ {Ltr ) (∂Jr

∂Ft
)

0
} (55)

δσ ) ∑
r

∑
t

Ft LtrFr (56)

Ltr ) Lrt (57)

Jr ) [∂(δσ)
∂Fr

]
0

(58)

Ltr ) (∂Jr

∂Ft
)

0
) 1

2[ ∂
2(δσ)

∂Ft ∂Fr
]

0
) 1

2[ ∂
2(δσ)

∂Fr ∂Ft
]

0
) ( ∂Jt

∂Fr
)

0
) Lrt
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Let us reexamine the KL entropy deficiency between the
current (instantaneous) densities of subsystemsG and their
equilibrium (Hirshfeld) densitiesGH :

It can be transformed into an explicit functional of displacements
{δFk} in the local intensities of eq 43a

which gives rise to the associated subsystem local intensities

The second-order Taylor expansion of∆s(r |GH) in powers
of δG ) G - GH ) {δFk} (cf. eqs 35a and 35b] around the
equilibrium densities{Fk ) Fk

H} for which {δFk ) 0} and thus
{Fk(r |Fk

H)|0 ) 1} gives

since∆s(r |GH)|0 ) 0 andskl(r |GH) ) {[∂2∆s(r |GH)/∂Fk(r )∂Fl(r )]0}
) [Fk

H(r )]-1δkl ) skl
H (eq 35b). Thus, one recovers the local

Gaussian distribution of Einstein’s quadratic approach (cf. eq
37) approximating the exact Hirshfeld distribution function of
eq 33:

At this point, instead of expanding the KL information
distanceδ∆s ) ∆s(r |GH) (eqs 5a and 70), one could expand in
powers ofδF the density

of the Legendre transform∆S[G, FH|G0] ≡ ∫∆sL(r |FH) dr itself
(see eq 26). A reference to the constrained variational principle
of eqs 17, 25, and 26 (see also eqs 18 and 19) indicates that its
linear terms must identically vanish since∂∆sL/∂Fk(r )|0 )
δFk|0 ) 0. Thus, truncating the series at the second order term
gives (see eq 35b)

As we have already remarked before, the specific form of
the relative entropy source (eqs 52, 56, and 66) will depend on
the adopted measure of the entropy deficiency density, all of
them predicting the unbiased Hirshfeld partitioning as the
equilibrium scheme. But even for a given choice of the
information distance, an identification of affinities and fluxes
is not unique. We have identified in the local entropy production
expression of eq 52 the specific choice of these quantities, which
closely follows that adopted in the irreversible thermodynamics
of continuous systems. However, in eqs 62a, 62b, and 66, the
displacement in the local intensity relative to the Hirshfeld value
(eq 43a]) rather then its gradient (eq 43b) has been used as an
alternative definition of a local thermodynamic force driving
the flows{Jk}.

As an additional illustration of this dependence, let us consider
the rate of the Legendre-transformed densityδ∆sL. Differentiat-
ing eq 73 gives

sinceFk
H is stationary. For thekth subsystem in a molecule,

this expression identifies yet another pair of affinitiesf k

measuring the Hirshfeld-referenced relative density displacement
and the conjugated fluxJk of eq 62b. Clearly, this new entropy
deficiency source gives rise to yet another set of kinetic
coefficients: {lkl ) ∂J l/∂fk}.

Therefore, a choice of affinities and fluxes, even within a
given entropy deficiency representation, is by no means unique.
It depends on the selected functional form of the information
distance density. As we have seen, the specific identification
of these parameters also affects the explicit form of the resulting
kinetic coefficients and reciprocity relations.

The equilibrium distribution of electrons among constituent
subsystems represents the statistical equilibrium (i.e., the average
effect over instantaneous fluctuations in the subsystem densities
δG(δF) preserving the overall densityF. Clearly, these fluctua-
tions also affect the displacements of the local instantaneous
intensitiesδF ) δF(δG). Therefore, as a final example of the
nonuniqueness of the local information-theoretic development,
one could consider the entropy deficiency as a functional of
forcesδF of eqs 43a and 47 rather than of subsystem densities
G ) G(δF) or their displacements, e.g.,δ∆S[δF] ) ∆S[G(δF)|GH]
) ∑k∫Fk δFk dr ≡ ∫δ∆s(δF) dr . The Legendre transform
∆S[G(δF), FH|G0] ≡ ∫∆sL(δFH) dr or its fluctuationδ∆S[G(δF),

∆S[G|GH] ) ∑
k
∫Fk ln(Fk/Fk

H) dr ≡

∑
k
∫∆sk(r |Fk

H) dr ≡ ∫∆s(r |GH) dr (67)
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Fk
0) - ln(Fk

H
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0)] dr )

∑
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H) dr ≡ ∑
k
∫Fk δFk dr (68)

Fk(r |Fk
H) )

δ∆S[G|GH]
δFk

) ln[ Fk

Fk
H] + 1 ≡ δFk + 1

k ) 1, 2, ...,m (69)
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) ∑
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H) (70)
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) $k exp{-F-1[∆sk
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H) - Fk(r |Fk
H)|0 δFk}

) $k exp{-(2Fk
HF)-1[(δFk)

2]}

) $k exp{-(2Dk
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1
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∑
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l

skl
H δFk δFl )
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FH|G0] ≡ ∫δ∆sL(δFH) dr (eq 73) can be similarly treated as
functionals of displacements in local intensities.

The dependence of the instantaneous densities of subsystems
on their conjugate intensities follows from eq 43a,

and hence∂(δFk)/∂(δFk) ) Fk.
As an illustrative example, consider the symmetrized infor-

mation distance of Kullback3b defining the divergence

Substituting the expansion of eq 75 into eq 76 gives the
corresponding expansion of the subsystem divergence density:

The above quadratic expansion demonstrates that this function
indeed exhibits a stable equilibrium atδFk ) 0 (i.e., for the
Hirshfeld partitioning of the molecular electron density. The
local δ∆sk

K conjugate ofδFk is defined by the derivative (see
eqs 75 and 77a)

The expression for the local divergence source relative to
the Hirshfeld value thus reads

Therefore, in this divergenceδF representation the rates of
change in local intensities,{jk ≡ d(δFk)/dt}, determine the
relevant Kullback fluxes, whereas theδF-dependent parameters
X of eq 77b, proportional to the corresponding Hirshfeld density
values, play the role of the conjugate affinities.

Clearly, one could also derive the corresponding relations
for the directed divergence measure of the information distance,
δ∆S[δF] ) ∆S[G(δF)|GH], treating the relative subsystem
intensitiesδF as independent state parameters.14

8. Conclusions

In information theory, the free-subsystem-referenced varia-
tional principle of the entropy deficiency, subject to the auxiliary
conditions of the exhaustive partitioning of the molecular density

at each point in space, leads to the stockholder electron densities
of molecular fragments, which mark the entropy-stable equi-
librium state in the subsystem resolution. The resulting overlap-
ping Hirshfeld pieces of the molecular electron distribution
exhibit equalized chemical potentials, remove exactly the
nonadditivity of the overall entropy deficiency, and exhibit
several information density equalization rules, which make them
attractive concepts for a chemical interpretation.4-7

With the present instantaneous development, we have ex-
plored the local thermodynamic analogies in the nonequilibrium
information-theoretic description of the vertical processes in
molecular subsystems, which preserve the density of the system
as a whole. The alternative representations of such a local
approach, corresponding to different measures of the missing
information or different choices of independent state parameters,
have been examined, and the corresponding affinities (forces)
and fluxes (responses) determining the relevant local entropy
deficiency source have been identified in close analogy to the
phenomenological irreversible thermodynamics.1 For the linear
dynamical processes in a molecule (Markoffian system), they
imply the local reciprocity rules, analogues of the familiar
Onsager relations,1 which reflect basic symmetries between the
linear effects of the subsystem affinities on fluxes. Therefore,
the thermodynamic analogies in the entropic description of
vertical processes in molecular subsystems can indeed be
extended to the nonequilibrium, instantaneous electron distribu-
tions and irreversible processes covering both density fluctua-
tions relative to the (stationary) Hirshfeld values and electron
flows between constituent fragments. The freedom of choosing
alternative state parameters is also reminiscent of that in ordinary
thermodynamics.

This and previous works show that the complementary
quantities of the entropy deficiency, based on the Shannon
entropy/information measure, provide a solid basis for extracting
a chemical interpretation from the available molecular electron
densities in terms of atoms, functional groups, reactants, and
so forth. The entropic concepts can also be used to probe
chemical bond multiplicities (subsystem connectivities) in
different molecular environments.11 With the present develop-
ment, the Hirshfeld subsystems, previously regarded as static
entities, can now also be viewed as the averages of the
instantaneous (dynamic) entities, with the distribution of local
fluctuations being related to the relevant missing information
density in the thermodynamic-like fashion. This opens the
possibility of extending the range of applications of the
information-theoretic treatment of the submolecular processes
to the realm of nonequilibrium states of subsystems (e.g., the
electronic structure reorganization in a chemical reaction). In
other words, this analysis establishes a theoretical framework
for an eventual dynamical indexing of the nonequilibrium
reactivity phenomena.

Clearly, the vertical, submolecular reality in the subsystem
resolution, so important to the language of chemistry, cannot
be directly validated experimentally since it is not an observable.
It can be verified only indirectly by the demonstrated close
analogy to the phenomenological thermodynamics. Nevertheless,
consistent chemical interpretations call for a theoretical frame-
work introducing the causality relations between perturbations
and responses of molecular subsystems, paralleling the familiar
structure of the ordinary thermodynamics. With this develop-
ment, we have established basic conceptual ingredients of such
an information-theoretic approach, filling a gap of the instan-
taneous density fluctuations, which are always present in open
molecular subsystems. These fluctuations are the key ingredient
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of many chemical concepts (e.g., the chemical softness and
Fukui function10,15).

The information-theoretic outlook on the electronic structure
of molecular systems introduces a novel entropy representation
of molecular systems, which we have shown to be vital for a
local thermodynamic interpretation of chemical processes. With
this development, the whole experience of the ordinary ther-
modynamics can thus be employed in treating a variety of subtle
processes in chemistry.
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